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Secure Communication in Stochastic Wireless
Networks—Part II: Maximum Rate and Collusion

Pedro C. Pinto, Member, IEEE, João Barros, Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—In Part I of this paper, we introduced the intrinsically
secure communications graph ( -graph)—a random graph which
describes the connections that can be established with strong se-
crecy over a large-scale network, in the presence of eavesdroppers.
We focused on the local connectivity of the -graph, and proposed
techniques to improve it. In this second part, we characterize the
maximum secrecy rate (MSR) that can be achieved between a node
and its neighbors. We then consider the scenario where the eaves-
droppers are allowed to collude, i.e., exchange and combine infor-
mation. We quantify exactly how eavesdropper collusion degrades
the secrecy properties of the network, in comparison to a noncol-
luding scenario. Our analysis helps clarify how the presence of
eavesdroppers can jeopardize the success of wireless physical-layer
security.

Index Terms—Colluding eavesdroppers, physical-layer security,
secrecy capacity, stochastic geometry, wireless networks.

I. INTRODUCTION

T HE ability to exchange secret information is critical to
many commercial, governmental, and military networks.

Although much has been achieved in terms of securing the
higher layers of the classical protocol stack, protecting the
physical layer of wireless networks from one or multiple eaves-
droppers remains a formidable task. The theoretical foundation
for physical-layer security over noisy channels, which builds
on the notion of perfect secrecy [1], was laid in [2] and later in
[3]. More recently, space–time signal processing techniques for
secure communication over wireless links appeared in [4], and
the secrecy capacity of various single-input multiple-output
(SIMO) fading channels was established in [5]. The concept of
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outage secrecy capacity of slow fading channels was presented
in detail in [6], whereas the ergodic secrecy capacity of fading
channels was derived in [7] and [8]. The presence of colluding
eavesdroppers is considered in [9], but restricting its attention
to a fixed number of eavesdroppers placed at the same spatial
location.
In Part I of this paper [10], we introduced the intrinsically

secure communications graph ( -graph)—a random graph
which describes the connections that can be securely estab-
lished over a large-scale network. We focused on the local
connectivity of the -graph. In this second part, we study the
achievable secrecy rates, as well as the effect of eavesdropper
collusion on secure connectivity. The main contributions of
this paper are as follows:
1) Maximum secrecy rate (MSR) in the -graph: We pro-
vide a complete probabilistic characterization of the MSR
between a typical node of the Poisson -graph and each
of its neighbors. In addition, we derive expressions for the
probability of existence of a nonzero MSR, and the proba-
bility of secrecy outage.

2) The case of colluding eavesdroppers: We provide a char-
acterization of the MSR and average node degrees for sce-
narios in which the eavesdroppers are allowed to collude.
We quantify exactly how eavesdropper collusion degrades
the secrecy properties of the legitimate nodes, in compar-
ison to a noncolluding scenario.

This paper is organized as follows. Section II briefly reviews
the system model introduced in Part I. Section III considers the
MSR between a node and its neighbors. Section IV characterizes
the case of colluding eavesdroppers. Section V concludes the
paper and summarizes important findings.

II. MODEL SUMMARY

We briefly review the system model. The -graph, intro-
duced in Part I, is a convenient representation of the links that
can be established with information-theoretic security in a large-
scale network. If denotes the set of legitimate nodes
and the set of eavesdroppers, then the edge set of the
-graph is given by

(1)

where is the desired secrecy rate for each communication link;
and is the MSR of the legitimate link , given in
[10, eq. (4)].
For the purpose of this paper, we can write the received power

associated with link as , where is
the transmit power, is the link length, and is the channel
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TABLE I
NOTATION AND SYMBOLS

gain function satisfying the conditions in [10, Sec. II-A]. In the
remainder of the paper, we consider that are mutually
independent, homogeneous Poisson point processes with densi-
ties and , respectively. We use and
to denote the ordered random distances between the origin of
the coordinate system and the nodes in and , respectively,
where and . A summary
of the notation and symbols can be found in Table I.

III. MSR IN THE POISSON -GRAPH

In Part I of the paper, we characterized secure connec-
tivity, i.e., the connections whose MSR exceed the
threshold in (1). However, we did not provide any character-
ization of the actual secrecy rate supported by the
link . In this section, we analyze the MSR between a node
and each of its neighbors, as well as the probability of existence
of a nonzero MSR, and the probability of secrecy outage. To
obtain additional insights, we consider that the noise powers of
legitimate nodes and eavesdroppers are equal ( )
and that the channel gain is of the form , where the
amplitude loss exponent is environment-dependent and can
approximately range from 0.8 (e.g., hallways inside buildings)
to 4 (e.g., dense urban environments).

A. Distribution of the MSR

Considering the coordinate system depicted in [10, Fig. 4],
the MSR between the node at the origin and its th closest
neighbor can be written for a given realization of the node
positions and as

(2)

in bits per complex dimension, where . For
each instantiation of the random Poisson processes and ,
a realization of the random variable (RV) is obtained. The

following theorem provides the distribution of this random vari-
able.
Theorem 3.1: The MSR between a typical node and its
th closest neighbor is an RV whose cumulative distribu-
tion function (cdf) is given by

(3)

for .
Proof: See Appendix A.

B. Existence and Outage of the MSR

Based on the results of Section III-A, we can now obtain the
probability of existence of a nonzero MSR, and the probability
of secrecy outage.
Corollary 3.1: Considering the link between a typical node

and its th closest neighbor , the probability of existence
of a nonzero MSR, , is given by

(4)

and the probability of an outage in MSR,
, is given in (3).

Proof: To obtain (4), we note that the event
is equivalent to . Thus, we use [10, eq. (12)] to write

The expression for follows directly from (3).
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Fig. 1. Probability of existence of a nonzero MSR versus the eaves-
dropper density , for various values of the neighbor index ( m ,

, , bit).

Fig. 2. Probability of secrecy outage between a node and its th
closest neighbor, for various values of the neighbor index ( m ,

m , , ).

C. Numerical Results

Fig. 1 shows the probability of existence of a nonzero
MSR from a typical node to its th neighbor, as a function of the
eavesdropper density . It can be seen that the existence of a
nonzero MSR to any neighbor becomes less likely as the
value of increases. Furthermore, since , as
the value of increases, the th neighbor becomes further away,
and the corresponding decreases.
Fig. 2 shows the probability of secrecy outage of a

typical node transmitting to its th neighbor, as a function of the
desired secrecy rate . As expected, a secrecy outage becomes
more likely as we increase the target secrecy rate set by the
transmitter.

IV. THE CASE OF COLLUDING EAVESDROPPERS

We now aim to study the effect of colluding eavesdroppers
on the secrecy of communications. In Sections IV-A–IV-D, we

Fig. 3. Communication in the presence of colluding eavesdroppers.

first consider a single legitimate link with deterministic length
in the presence of a random process . Such simplification

eliminates the randomness associated with the position of the
legitimate nodes. We then consider both random processes
and in Section IV-E, and characterize the average node de-
gree in the presence of eavesdropper collusion.

A. MSR of a Single Link

We consider the scenario depicted in Fig. 3, where a legit-
imate link is composed of two nodes: one transmitter located
at the origin (Alice), and one receiver located at a determin-
istic distance from the origin (Bob). The eavesdroppers have
the ability to collude, i.e., they can exchange and combine the
information received by all the eavesdroppers to decode the se-
cret message. The eavesdroppers are scattered in the two-dimen-
sional plane according to an arbitrary spatial process , and
their distances to the origin are denoted by , where

.
Since the colluding eavesdroppers may gather the received

information and send it to a central processor, the scenario de-
picted in Fig. 3 can be viewed as the SIMO Gaussian wiretap
channel in Fig. 4. Here, the input is the signal transmitted by
Alice, and the output of the wiretap channel is the collection
of signals received by all the eavesdroppers. We consider that
Alice sends a symbol with power constraint
. The vectors and represent, respec-

tively, the gains of the legitimate and eavesdropper channels.1

The noise is represented by the vectors and ,
which are considered to be mutually independent Gaussian RVs
with zero mean and nonsingular covariance matrices and ,
respectively. The system of Fig. 4 can then be summarized as

(5)

(6)

The scenario of interest can be obtained from the SIMO
Gaussian wiretap channel in Fig. 4 by appropriate choice of
the parameters , , , and , as shown in the following
theorem.

1We use boldface letters to denote vectors and matrices.
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Fig. 4. SIMO Gaussian wiretap channel, which can be used to analyze the sce-
nario of colluding eavesdroppers depicted in Fig. 3.

Theorem 4.1: For a given realization of the arbitrary eaves-
dropper process , the MSR of the legitimate link is given by

(7)
where is the aggregate power re-
ceived by all the eavesdroppers.

Proof: For a given realization of the channels and , it
can be shown [11] that and are
sufficient statistics to estimate from the corresponding obser-
vations and .2 Since sufficient statistics preserve mutual
information [12], for the purpose of determining the MSR the
vector channels in (5) and (6) can be equivalently written in a
(complex) scalar form corresponding to the Gaussian wiretap
channel introduced in [13]. Thus, the MSR of the legitimate
channel for a given realization of the channels and is given
by

(8)

Setting , ,

, and , where and are the noise
powers of the legitimate and eavesdropper receivers, respec-
tively, and is the identity matrix, then (8) reduces to
(7). This concludes the proof.

B. Distribution of the MSR of a Single Link

Theorem 4.1 is valid for a given realization of the spatial
process . In general, the MSR of the legitimate link is
an RV, since it is a function the random eavesdropper distances

. The following theorem characterizes the distribution
of the MSR.
Theorem 4.2: If is a Poisson process with density and

, , the MSR of the legitimate link is an

2We use to denote the conjugate transpose operator.

RV whose cdf is given by

(9)
where is the capacity of the legiti-
mate channel; is defined as

(10)

with denoting the gamma function; and is the cdf

of a skewed stable RV , with parameters3

(12)

Proof: For , the MSR of the legitimate
channel in (7) is a function of the total power received by the
eavesdroppers, . If is a Poisson
process, the characteristic function of can be written as
[15]

(13)

for . Defining the normalized stable RV
with , we have
from the scaling property [14]. In general, the cdf
cannot be expressed in closed form except in the case where

, which is analyzed in Section IV-F. However, the
characteristic function of has the simple form of

, and
thus can always be expressed in the integral form for

numerical evaluation. Using (7), we can now express
in terms of the cdf of , for , as

In addition, for and for ,
since the RV in (7) satisfies , i.e., the MSR of
the legitimate link in the presence of colluding eavesdroppers
is a positive quantity which cannot be greater than the MSR of
the legitimate link in the absence of eavesdroppers. This is the
result in (9) and the proof is complete.

3We use to denote the distribution of a real stable RV with charac-
teristic exponent , skewness , and dispersion .
The corresponding characteristic function is [14]

(11)
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TABLE II
COMPARISON BETWEEN THE CASES OF NONCOLLUDING AND COLLUDING EAVESDROPPERS, CONSIDERING A SINGLE LEGITIMATE LINK

AND A CHANNEL GAIN OF THE FORM

C. Existence and Outage of the MSR of a Single Link

Based on the results of Section IV-B, we can now obtain the
probability of existence of a nonzero MSR, and the probability
of secrecy outage for a single legitimate link in the presence of
colluding eavesdroppers. The following corollary provides such
probabilities.
Corollary 4.1: If is a Poisson process with density and

, , the probability of existence of a nonzero
MSR in the legitimate link is given by

(14)

and the probability of an outage in the MSR of the legitimate
link, for , is given by

(15)
where is the capacity of the legiti-
mate channel; and is the cdf of the normalized stable

RV , with parameters given in (12).
Proof: The expressions for and follow

directly from (9).

D. Colluding versus Noncolluding Eavesdroppers for a Single
Link

We have so far considered the fundamental secrecy limits of
a single legitimate link in the presence of colluding eavesdrop-
pers. According to Theorem 4.1, such a scenario is equivalent to
having a single eavesdropper with an array that collects a total
power . In particular, when the eaves-
droppers are positioned according to an homogeneous Poisson
process, Theorem 4.2 shows that the RV has a skewed
stable distribution.
We can obtain further insights by establishing a direct com-

parison with the case of a single legitimate link in the presence
of noncolluding eavesdroppers. In such a scenario, the MSR
does not depend on all eavesdroppers, but only on the one with
maximum received power (i.e., the closest one, when only path
loss is present). Thus, the total eavesdropper power is given by

. Table II summarizes the differences between
the colluding and noncolluding scenarios for a single legitimate
link.

E. -Graph With Colluding Eavesdroppers

To study the effect of colluding eavesdroppers, we have so far
made a simplification concerning the legitimate nodes. Specifi-
cally, we considered only a single legitimate link with determin-
istic length as depicted in Fig. 3, thus eliminating the ran-
domness associated with the position of the legitimate nodes.
We now revisit the -graph model depicted in [10, Fig. 2],
where both legitimate nodes and eavesdroppers are distributed
according to Poisson processes and . In particular, the fol-
lowing theorem characterizes the effect of collusion in terms of
the resulting average node degree in such a graph.
Theorem 4.3: For the Poisson -graph with colluding eaves-

droppers, secrecy rate threshold , equal noise powers
, and channel gain function , ,

the average degrees are given by

(16)

where and denote, respectively, the in- and out-de-
grees of a typical node, and .

Proof: We consider the process obtained by
adding a legitimate node to the origin of the coordinate system,
and denote the out-degree of the node at the origin by .
Using (7), we can write

The average out-degree can be determined as4

(17)

4We use to denote the closed two-
dimensional ball centered at point , with radius .
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where the RV has a stable distribution with parameters
given in (13). As before, we define the normalized stable RV

with , such that
. Then, we can rewrite (17) as

(18)

Using the Mellin transform of a stable RV, we show in
Appendix B that (18) simplifies to the expression in (16).
Noting that , the theorem follows.
It is insightful to rewrite (16) as

where , and for . The function
can be interpreted as the degradation factor in average con-

nectivity due to eavesdropper collusion. In the extreme where
(free-space propagation), we have complete loss of se-

cure connectivity with . This is because the series
diverges (i.e., the total received eaves-

dropper power is infinite), so the resulting average node degree
is zero. In the other extreme where , we achieve the
highest secure connectivity with . This is because the
first term in the series (corresponding to the non-
colluding term) is dominant, so the average node degree in the
colluding case approaches the noncolluding one. In conclusion,
cluttered environments with larger amplitude loss exponents
are more favorable for secure communication, in the sense that
in such environments collusion only provides a marginal per-
formance improvement for the eavesdroppers.

F. Numerical Results

We now illustrate the results obtained in the previous sec-
tions with a simple case study. We consider the case where

, i.e., the legitimate link and the eavesdrop-
pers are subject to the same noise power, which is introduced by
the electronics of the respective receivers. Furthermore, we con-
sider that the amplitude loss exponent is , in which case the
cdf of for colluding eavesdroppers can be expressed using
the Gaussian -function as , . In
addition, (14) and (15) reduce, respectively, to

(19)

and

(20)

From these analytical results, we observe that of all the fol-
lowing factors lead to a degradation of the security of commu-
nications: increasing or , decreasing , or allowing
the eavesdroppers to collude.

Fig. 5. PDF of the (normalized) received eavesdropper power
, for the cases of colluding and noncolluding eavesdroppers ( ,
m ).

Fig. 6. Probability of existence of a nonzero MSR versus the eaves-
dropper density , for the cases of colluding and noncolluding eavesdroppers,
and various values of ( ).

Fig. 5 compares the probability density functions (pdfs) of
the (normalized) received eavesdropper power , for the
cases of colluding and noncolluding eavesdroppers. For ,
it is clear that a.s., i.e., the received
eavesdropper power is larger in the colluding case, re-
sulting in a pdf whose mass is more biased towards higher real-
izations of .
Fig. 6 plots the probability of existence of a nonzero

MSR, given in (19), as a function of the eavesdropper density
, for various values of the legitimate link length . As pre-

dicted analytically, the existence of a positive MSR becomes
less likely by increasing or . A similar degradation in se-
crecy occurs by allowing the eavesdroppers to collude, since
more signal power from the legitimate user is available to the
eavesdroppers, improving their ability to decode the secret mes-
sage.
Fig. 7 quantifies the probability of secrecy outage,

given in (20), as a function of the desired secrecy rate , for
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Fig. 7. Probability of secrecy outage for the cases of colluding
and noncolluding eavesdroppers, and various densities of eavesdrop-
pers ( , , m). The vertical line marks the
capacity of the legitimate link, which for these system parameters is

bits complex dimension.

Fig. 8. Normalized average node degree of the -graph, ,
versus the amplitude loss exponent , for the cases of colluding and noncol-
luding eavesdroppers.

various values of eavesdropper density. The vertical line marks
the capacity of the legitimate link, which for the parameters
indicated in Fig. 7 is

As expected, if the target secrecy rate set by the transmitter
exceeds , a secrecy outage occurs with probability 1, since
the MSR cannot be greater that the capacity of the legit-
imate link. In comparison with the noncolluding case, the ability
of the eavesdroppers to collude leads to higher probabilities of
secrecy outage. A similar degradation in secrecy occurs by in-
creasing the eavesdropper density .
Fig. 8 quantifies the (normalized) average node degree of the
-graph, , versus the amplitude loss expo-

nent . The normalizing factor corresponds to the average

out-degree in the noncolluding case. As predicted analytically,
we observe that in the colluding case, the normalized average
out-degree is strictly increasing with
. Furthermore, because the received eavesdropper
power is infinite, and because the first (non-
colluding) term in the series dominates the other terms.
It is apparent from the figure that cluttered environments with
larger amplitude loss exponents are more favorable for secure
communication, as discussed.

V. CONCLUSION

This two-part paper investigated the secrecy properties of sto-
chastic networks, from an information theoretic perspective. In
Part I, we introduced the -graph, which captures the connec-
tions that can be securely established with strong secrecy over a
large-scale network, in the presence of eavesdroppers. We char-
acterized the local connectivity of the -graph, and proposed
techniques to improve it.
In this second part, we investigated the achievable secrecy

rates and the effect of eavesdropper collusion. Specifically, we
characterized the pdf of the MSR between a legitimate
node and its th neighbor, as well as the probability of existence
of a nonzero MSR and the probability of secrecy outage. We
quantified how these metrics depend on the densities , the
signal-to-noise-ratio , and the amplitude loss exponent .
Then we established the fundamental secrecy limits when the

eavesdroppers are allowed to collude, by showing that this sce-
nario is equivalent to an SIMO Gaussian wiretap channel. For
an arbitrary spatial process of the eavesdroppers, we de-
rived the MSR of a legitimate link. Then, for the case where
is a spatial Poisson process and the channel gain is of the

form , we obtained the cdf of MSR of a legiti-
mate link, and the average degree in the -graph with colluding
eavesdroppers. We concluded that as we increase the density
of eavesdroppers, or allow the eavesdroppers to collude, more
power is available to the adversary, improving their ability to
decode the secret message, and hence decreasing theMSR of le-
gitimate links. Furthermore, we showed that cluttered environ-
ments with large amplitude loss exponent are more favorable
for secure communications, in the sense that in such regime col-
lusion only provides a marginal performance improvement for
the eavesdroppers.
Our work has not yet addressed all of the far-reaching im-

plications of the broadcast property of the wireless medium. In
the most general scenario, legitimate nodes could, for example,
transmit their signals in a cooperative fashion, whereas mali-
cious nodes could use jamming to disrupt all communications.
Further work is also necessary to develop practical systems that
implement the principles of physical-layer security. Although
there has been recent work in that direction [16]–[19], prac-
tical codes need to be devised to achieve the secrecy capacity,
in the presence of channel randomness and multiple (possibly
colluding) eavesdroppers. We hope that further efforts in com-
bining stochastic geometry with information-theoretic princi-
ples will lead to a more comprehensive treatment of wireless
security.
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APPENDIX A
PROOF OF THEOREM 3.1

The MSR in (2) can be expressed as

, where and

. The RV is a transforma-
tion of the RV through the monotonic function

, and thus its pdf is given by the
rule . Note that the
sequence represents Poisson arrivals on the line with
the constant arrival rate , as can be easily shown using the
mapping theorem [20, Sec. 2.3]. Therefore, the RV has an
Erlang distribution of order with rate , and its pdf is given
by

Then, applying the above rule, can be shown to be

(21)

for . Replacing with and setting , we obtain
the pdf of as

(22)

for . Since the sequences and are
mutually independent, so are the RVs and . This implies
that the cdf of can be obtained through
convolution of and as

(23)

for . Replacing (21) and (22) into (23), we obtain (3).

APPENDIX B
DERIVATION OF (16)

Let the Mellin transform of an RV with pdf be de-
fined as5

(24)

If with , then [21, eq. (17)]

(25)

5In the literature, the Mellin transform is sometimes defined differently as
. For simplicity, we prefer the definition in (24).

for . Then, since with
, we use (25) to write

(26)

Using (10) and (26), we expand (18) as

where we used the following properties of the gamma function:
and

. D efin i n ga n d n o t i n g t h a t, w e o b t a i n ( 1 6 ) .
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