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Secure Communication in Stochastic Wireless
Networks—Part I: Connectivity

Pedro C. Pinto, Member, IEEE, João Barros, Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—The ability to exchange secret information is critical
to many commercial, governmental, and military networks. Infor-
mation-theoretic security—widely accepted as the strictest notion
of security—relies on channel coding techniques that exploit the in-
herent randomness of the propagation channels to strengthen the
security of digital communications systems. Motivated by recent
developments in the field, we aim to characterize the fundamental
secrecy limits of wireless networks. The paper is comprised of two
separate parts. In Part I, we define the intrinsically secure commu-
nications graph ( -graph), a random graph which describes the
connections that can be securely established over a large-scale net-
work.We provide conclusive results for the local connectivity of the
Poisson -graph, in terms of node degrees and isolation probabil-
ities. We show how the secure connectivity of the network varies
with the wireless propagation effects, the secrecy rate threshold of
each link, and the noise powers of legitimate nodes and eavesdrop-
pers. We then propose sectorized transmission and eavesdropper
neutralization as viable strategies for improving the secure connec-
tivity. Our results help clarify how the spatial density of eavesdrop-
pers can compromise the intrinsic security of wireless networks. In
Part II of the paper, we study the achievable secrecy rates and the
effect of eavesdropper collusion.

Index Terms—Node degree, physical-layer security, secure con-
nectivity, stochastic geometry, wireless networks.

I. INTRODUCTION

C ONTEMPORARY security systems for wireless net-
works are based on cryptographic primitives that

generally ignore two key factors: a) the physical properties of
the wireless medium, and b) the spatial configuration of both
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the legitimate and malicious nodes. These two factors are im-
portant since they affect the communication channels between
the nodes, which in turn determine the fundamental secrecy
limits of a wireless network. In fact, the inherent randomness
associated with the wireless medium and the spatial location of
the nodes can be leveraged to provide intrinsic security of the
communications infrastructure at the physical-layer level.1

The basis for information-theoretic security, which builds on
the notion of perfect secrecy [1], was laid in [2] and later in
[3] and [4]. More recently, there has been a renewed interest
in information-theoretic security over wireless channels, from
the perspective of space–time communications [5], multiple-
input multiple-output communications [6]–[10], eavesdropper
collusion [11], cooperative relay networks [12], fading chan-
nels [13]–[17], strong secrecy [18], [19], secret key agreement
[20]–[23], code design [24]–[27], among other topics. A funda-
mental limitation of this literature is that it only considers sce-
narios with a small number of nodes. To account for large-scale
networks composed of multiple legitimate and eavesdropper
nodes, secrecy graphs were introduced in [28] from a geomet-
rical perspective, and in [29] from an information-theoretic per-
spective. The scaling laws of the secrecy capacity were pre-
sented in [30] and [31].
In this paper, we aim at a mathematical characterization of

the secrecy properties of stochastic wireless networks. The main
contributions are as follows:
1) Framework for intrinsic security in stochastic networks:
We propose and define the “intrinsically secure commu-
nications graph” ( -graph), based on the notion of strong
secrecy. Our framework considers spatially scattered users
and eavesdroppers, subject to generic wireless propagation
characteristics.

2) Local connectivity in the -graph: We provide a complete
probabilistic characterization of both in-degree and out-
degree of a typical node in the Poisson -graph, using
fundamental tools of stochastic geometry.

3) Techniques for communication with enhanced secrecy: We
propose sectorized transmission and eavesdropper neutral-
ization as two techniques for enhancing the secrecy of
communication, and quantify their effectiveness in terms
of the resulting average node degrees.

In Part II of the paper [32], we study the achievable secrecy rates
and the effect of eavesdropper collusion.
This paper is organized as follows. Section II describes the

system model. Section III characterizes local connectivity in the

1In the literature, the term “security” typically encompasses three different
characteristics: secrecy (or privacy), integrity, and authenticity. This paper does
not consider the issues of integrity or authenticity, and the terms “secrecy” and
“security” are used interchangeably.

1556-6013/$26.00 © 2011 IEEE
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Fig. 1. Wireless wiretap channel.

Poisson -graph. Section IV analyzes two techniques for en-
hancing the secrecy of communication. Section V concludes the
paper and summarizes important findings.

II. SYSTEM MODEL

We start by describing our system model and defining our
measures of secrecy.

A. Wireless Propagation Characteristics

Given a transmitter node and a receiver node
, we model the received power associated with

the wireless link as

(1)

where is the (common) transmit power of the legitimate
nodes; and is the power gain of the link

, where the random variable (RV) represents the
random propagation effects associated with link (such
as multipath fading or shadowing). We consider that the

are independent identically distributed (i.i.d.)
RVs with common probability density function (pdf) , and
that due to channel reciprocity. The channel
gain is considered constant (quasi-static)
throughout the use of the communications channel, which
corresponds to channels with a large coherence time. The gain
function is assumed to satisfy the following conditions:
1) depends on and only through the
link length ; with abuse of notation, we can write

.2

2) is continuous and strictly decreasing in .
3) .
The proposed model is general enough to account for common
choices of . One example is the unbounded model where

. The term accounts for the far-field
path loss with distance, where the amplitude loss exponent is
environment-dependent and can approximately range from 0.8
(e.g., hallways inside buildings) to 4 (e.g., dense urban environ-
ments), with corresponding to free-space propagation.
This model is analytically convenient [33], but since the gain

2For notational simplicity, when we omit the second argument of the
function and simply use .

becomes unbounded as the distance approaches zero, it must be
used with care for extremely dense networks. Another example
is the bounded model where . This model
has the same far-field dependence as the unbounded model,
but eliminates the singularity at the origin [34]. Unfortunately,
it often leads to intractable analytical results. Furthermore,
by appropriately choosing of the distribution of , both
models can account for various random propagation effects, in-
cluding Nakagami- fading, Rayleigh fading, and log-normal
shadowing [33].

B. Wireless Information-Theoretic Security

We now define our measure of secrecy more precisely. While
our main interest is in the behavior of large-scale networks, we
briefly review the setup for a single legitimate link with a single
eavesdropper. The results thereof will serve as a basis for the
notion of -graph to be established later.
Consider the model depicted in Fig. 1, where a legitimate user

(Alice) wants to send messages to another user (Bob). Alice en-
codes a message , represented by a discrete RV, into a code-
word, represented by the complex random sequence of length
, , for transmission over the
channel. Bob observes the output of a discrete-time channel (the
legitimate channel), which at time is given by

where is the quasi-static amplitude gain of the legit-
imate channel,3 and is AWGN with power
per complex sample.4 Bob makes a decision on based on

the output , incurring in an error probability equal to
. A third party (Eve) is also capable of eavesdropping on

Alice’s transmissions. Eve observes the output of a discrete-time
channel (the eavesdropper’s channel), which at time is given
by

3The amplitude gain can be related to the power gain in (1) as
, where and are, respectively, the length and random propagation

effects of the legitimate link.
4We use to denote a Gaussian distribution with mean and vari-

ance . Furthermore, we use to denote a circularly symmetric (CS)
complex Gaussian distribution, where the real and imaginary parts are i.i.d.

.
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where is the quasi-static amplitude gain of the eaves-
dropper channel, and is AWGN with power
per complex sample. It is assumed that the signals , ,
, , and are mutually independent. Each codeword trans-

mitted by Alice is subject to the average power constraint of
per complex symbol, i.e., . We

define the rate of transmission to be , where
denotes the entropy function. Throughout the paper, we

use strong secrecy as the condition for information-theoretic se-
curity, and define it as follows [18].
Definition 2.1 (Strong Secrecy): The rate is said to be

achievable with strong secrecy if , for sufficiently large
, there exists an encoder–decoder pair with rate satisfying
the following conditions:

We define the maximum secrecy rate (MSR) of the legiti-
mate channel to be the maximum rate that is achievable with
strong secrecy.5 If the legitimate link operates at a rate below
the MSR , there exists an encoder–decoder pair such that the
eavesdropper is unable to obtain additional information about
from the observation , in the sense that approaches

as the codeword length grows. It was shown in [4] and
[16] that for a given realization of the channel gains , the
MSR of the Gaussian wiretap channel is

(2)
in bits per complex dimension, where .6 In
the next sections, we use these basic results to analyze secrecy
in large-scale networks.

C. -Graph

Consider a wireless network where legitimate nodes and po-
tential eavesdroppers are randomly scattered in space, according
to some point process. The -graph is a convenient represen-
tation of the information-theoretically secure links that can be
established on such networks. In the following, we introduce a
precise definition of the -graph, based on the notion of strong
secrecy.
Definition 2.2 ( -Graph): Let denote

the set of legitimate nodes, and denote
the set of eavesdroppers. The -graph is the directed graph

with vertex set and edge set

(3)

5See [19] for a comparison between the concepts of weak and strong secrecy.
In the case of Gaussian noise, the MSR is the same under the weak and strong
secrecy conditions.
6Operationally, the MSR can be achieved if Alice first estimates and
(i.e., has full CSI), and then uses a code that achieves MSR in the AWGN

channel. Estimation of is possible, for instance, when Eve is another ac-
tive user in the wireless network, so that Alice can estimate the eavesdropper’s
channel during Eve’s transmissions. As we shall see, the -graph model pre-
sented in this paper relies on an outage formulation, and therefore does notmake
assumptions concerning availability of full CSI.

Fig. 2. Example of an -graph on .

where is a threshold representing the prescribed infimum se-
crecy rate for each communication link; and is the
MSR of the link for a given realization of the channel
gains, given by

(4)

with .

This definition presupposes that the eavesdroppers are not al-
lowed to collude (i.e., they cannot exchange or combine infor-
mation), and therefore only the eavesdropper with the strongest
received signal from determines the MSR between and
. The case of colluding eavesdroppers is analyzed in Part II

of this paper [32].
The iS-graph admits the following outage interpretation:

without access to the channel state information (CSI) of the
legitimate nodes and eavesdroppers, the legitimate nodes set a
target secrecy rate at which they unconditionally transmit. If
this rate is supported by the physical channel (i.e., no secrecy
outage), then there is an edge between the two nodes in the
-graph.
Consider now the particular scenario where the following

conditions hold: a) the infimum desired secrecy rate is zero, i.e.,
; b) the wireless environment introduces only path loss,

i.e., in (1); and c) the noise powers of the legitimate
users and eavesdroppers are equal, i.e., . Note
that by setting , we are considering the existence of se-
cure links, in the sense that an edge is present if and only
if . Under these special conditions, the edge set
in (3) simplifies to

(5)
which corresponds the geometrical model proposed in [28].
Fig. 2 shows an example of such an -graph on .
The spatial location of the nodes can be modeled either deter-

ministically or stochastically. However, in many important sce-
narios, only a statistical description of the node positions is avail-
able, and thus a stochastic spatial model is more suitable. In par-
ticular, when the node positions are unknown to the network de-
signer a priori, we may as well treat them as completely random
according to a homogeneous Poisson point process [35].7 The
Poisson process has maximum entropy among all homogeneous

7The spatial Poisson process is a natural choice in such situations because,
given that a node is inside a region , the pdf of its position is conditionally
uniform over .
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processes, and serves as a simple and useful model for the posi-
tion of nodes in a network.
Definition 2.3 (Poisson -graph): The Poisson -graph is

an -graph where are mutually independent, ho-
mogeneous Poisson point processes with densities and ,
respectively.
In the remainder of the paper (unless otherwise indicated),

we focus on Poisson -graphs on . We use and
to denote the ordered random distances between the

origin of the coordinate system and the nodes in and ,
respectively, where and .

III. LOCAL CONNECTIVITY IN THE POISSON -GRAPH

The node degrees are an important property of a graph, since
they describe the connectivity between a node and its imme-
diate neighbors. In a graph, the in-degree and out-degree of a
vertex are, respectively, the number of edges entering and ex-
iting the vertex. Since the -graph is a random graph, the in-
and out-degrees of the legitimate nodes are RVs. In this sec-
tion, we provide a complete probabilistic characterization of
both in-degree and out-degree of a typical node in the
Poisson -graph.8 We first consider the simplest case of
(the existence of secure links), (path loss only), and

(equal noise powers) in Sections III-A, III-B, and III-C.
This scenario leads to an -graph with a simple geometric de-
scription, thus providing various insights that are useful in un-
derstanding more complex cases. Later, in Sections III-D and
III-E, we separately analyze how the node degrees are affected
by wireless propagation effects other than path loss (e.g., mul-
tipath fading), a nonzero secrecy rate threshold , and unequal
noise powers .

A. In-Degree Characterization

The characterization of the in-degree relies on the notion of
Voronoi tessellation, which we now introduce. A planar tessel-
lation is a collection of disjoint polygons whose closures cover
, and which is locally finite (i.e., the number of polygons in-

tersecting any given compact set is finite). Given a generic point
process , we define the Voronoi cell of the
point as the set of points of which are closer to than
any other point of , i.e.,

The collection of all the cells forms a random Voronoi
tessellation with respect to the underlying point process . Let
denote the typical Voronoi cell, i.e., the Voronoi cell associ-

ated with a point placed at the origin, according to Slivnyak’s
theorem. Using the notions just introduced, the following the-
orem provides a probabilistic characterization of the in-degree
of the -graph.

8In this paper, we analyze the local properties of a typical node in the Poisson
-graph. This notion is made precise in [36, Sec. 4.4] using Palm theory.

Specifically, Slivnyak’s theorem states that the properties observed by a typical
legitimate node are the same as those observed by node 0 in the process

. Informally, a typical node of is one that is uniformly picked from
a finite region expanding to . In this paper, we often omit the word “typical”
for brevity.

Fig. 3. In-degree of a node. In this example, the node at the origin can receive
messages with information-theoretic security from nodes. The RV
is the area of a typical Voronoi cell, induced by the eavesdropper Poisson

process with density .

Theorem 3.1: The in-degree of a typical node in the
Poisson -graph has the following moment generating func-
tion (MGF):

(6)

where is the area of a typical Voronoi cell induced by a unit-
density Poisson process. Furthermore, all the moments of
are given by

(7)

where , , are the Stirling numbers of the
second kind [37, Ch. 24].

Proof: Using Slivnyak’s theorem [36, Sec. 4.4], we con-
sider the process obtained by adding a legitimate node
to the origin of the coordinate system, and denote the in-degree
of the node at the origin by . The RV corresponds to the
number of nodes from the process that fall inside the typical
Voronoi cell constructed from the process . This is
depicted in Fig. 3. Denoting the random area of such a cell by
, the MGF of is given by

where we used the fact that conditioned on , the RV
is Poisson distributed with parameter . If denotes the
random area of a typical Voronoi cell induced by a unit-density
Poisson process, then and (6) follows. This completes
the first half of the proof.
To obtain the moments of , we use Dobinski’s formula
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TABLE I
FIRST FOUR MOMENTS OF THE RANDOM AREA
OF A TYPICAL VORONOI CELL, INDUCED BY A

UNIT-DENSITY POISSON PROCESS

which establishes the relationship between the th moment of a
Poisson RV with mean and the Stirling numbers of the second
kind . Then,

for . This is the result in (7) and the second half of proof
is concluded.
Equation (7) expresses the moments of in terms of the

moments of . In general, cannot be obtained in closed
form, except in the case of , which is derived below in
(10). For and , can be expressed as multiple
integrals and then computed numerically [38]. Alternatively, the
moments of can be determined using Monte Carlo simula-
tion of random Poisson–Voronoi tessellations. The first four mo-
ments of are given in Table I.
The above theorem can be used to obtain the in-connectivity

properties of a node, such as the in-isolation probability, as
given in the following corollary.
Corollary 3.1: The average in-degree of a typical node in the

Poisson -graph is

(8)

and the probability that a typical node cannot receive from
anyone with positive secrecy rate (in-isolation) is

(9)

Proof: Setting in (7), we obtain
. Noting that

where is the typical Voronoi cell induced by a unit-density
Poisson process , we can write9

(10)

(11)

9We use to denote the closed two-
dimensional ball centered at point , with radius .

Fig. 4. Out-degree of a node. In this example, the node at the origin can transmit
messages with information-theoretic security to nodes.

Equation (10) follows from Fubini’s Theorem, while (11) fol-
lows from the fact that, for any , the event
is equivalent to having no points of in , as depicted
in Fig. 5(a). This completes the proof of (8). To derive (9), note
that the RV conditioned on is Poisson distributed with pa-
rameter , and thus

.

B. Out-Degree Characterization

Theorem 3.2: The out-degree of a typical node in the
Poisson -graph has the following geometric probability mass
function (PMF):

(12)

Proof: We consider the process obtained by
adding a legitimate node to the origin of the coordinate system,
and denote the out-degree of the origin by . The RV
corresponds to the number of nodes from the process that fall
inside the circle with random radius centered at the origin,
i.e., . This is depicted in Fig. 4.
To determine the PMF of , consider the one-dimensional
arrival processes and . As
can be easily shown using the mapping theorem [35, Sec. 2.3],

and are independent homogeneous Poisson processes
with arrival rates and , respectively. When there is an
arrival in the merged process , it comes from process
with probability ,

and from with probability , and these
events are independent for different arrivals [39]. Since the
event is equivalent to the occurrence of arrivals
from followed by one arrival from , then we have the
geometric PMF , , with parameter

. This is the result in (12) and the proof is
completed.
Note that this particular result was also derived in [28]. The

above theorem can be used to obtain the out-connectivity prop-
erties of a node, such as the out-isolation probability, as given
in the following corollary.
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Corollary 3.2: The average out-degree of a typical node in
the Poisson -graph is

(13)

and the probability that a typical node cannot transmit to anyone
with positive secrecy rate (out-isolation) is

(14)

Proof: This follows directly from Theorem 3.2.

C. General Relationships Between In- and Out-Degree

We have so far considered the probabilistic distribution of the
in- and out-degrees in a separate fashion. This section estab-
lishes a direct comparison between some characteristics of the
in- and out-degrees.
Property 3.1: For the Poisson -graph with and

, the average degrees of a typical node satisfy

(15)

Proof: This follows directly by comparing (8) and (13).
The property is valid in general for any

directed random graph.
Property 3.2: For the Poisson -graph with and

, the probabilities of in- and out-isolation of a typical
node satisfy

(16)

Proof: Let denote the number
of eavesdroppers inside region . With this definition, we can
rewrite the edge set in (5) as

(17)

i.e., is connected to if and only if the ball centered at
with radius is free of eavesdroppers. We consider the
process obtained by adding a legitimate node to the
origin of the coordinate system. Let denote the ordered points
in process of legitimate nodes, such that .
From (17), the node at the origin is out-isolated if and only if

for all . This is depicted in Fig. 5(b).
Since the balls , , are concentric at the origin, we
have

Similarly, we see from (17) that the node at the origin is in-iso-
lated if and only if for all . This is
depicted in Fig. 5(c). Then,

(18)

(19)

(20)

The fact that the inequality in (19) is strict is proved in
Appendix A. Equation (20) follows from the spatial invariance
of the homogeneous Poisson process . This concludes the
proof.
Intuitively, out-isolation is more likely than in-isolation be-

cause out-isolation only requires that one or more eavesdrop-
pers are closer than the nearest legitimate node . On the other
hand, in-isolation requires that every ball , , has
one or more eavesdroppers, which is less likely. Property 3.2
can then be restated in the following way: it is easier for an in-
dividual node to be in-connected than out-connected.

D. Effect of the Wireless Propagation Characteristics

We have so far analyzed the local connectivity of the
-graph in the presence of path loss only. However, wireless

propagation typically introduces random effects such as mul-
tipath fading and shadowing, which are modeled by the RV

in (1). In this section, we aim to quantify the impact of
such propagation effects on the local connectivity of a node.
Considering , , and arbitrary propaga-

tion effects with pdf , we can combine (4) with the
general propagation model of (1) and write

(21)

where . After some algebra,

the edge set for the resulting -graph can be written as

(22)
Unlike the case of path-loss only, where the out-connections of a
node are determined only by the closest eavesdropper, here they
are determined by the eavesdropper with the least attenuated
channel. We start by characterizing the distribution of the out-
degree in the following theorem.
Theorem 3.3: For the Poisson -graph with propagation ef-

fects whose pdf is given by a continuous function ,
the PMF of the out-degree of a typical node is given in
(12), and is invariant with respect to .

Proof: See Appendix B.
Intuitively, the propagation environment affects both legiti-

mate nodes and eavesdroppers in the same way, such that the
PMF of is invariant with respect to the particular form of

. However, the PMF of does depend on in a
nontrivial way, although its mean remains the same, as speci-
fied in the following corollary.
Corollary 3.3: For the Poisson -graph with propagation

effects distributed according to , the average node
degrees are

(23)

for any distribution .
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Fig. 5. Auxiliary diagrams. (a) Proof of Corollary 3.1. (b) Proof of Property 3.2. (c) Proof of Property 3.2.

Proof: This follows directly from Theorem 3.3 and the fact
that .
We thus conclude that the expected node degrees are invariant

with respect to the distribution characterizing the propagation
effects, and always equal the ratio of spatial densities.

E. Effect of the Secrecy Rate Threshold and Noise Powers

We have so far analyzed the local connectivity of the
-graph based on the existence of positive MSR, by consid-

ering a target secrecy rate of zero, i.e., in (3). We have
furthermore considered that the noise powers of the legitimate
users and eavesdroppers are equal, i.e., in (4). Under
these two conditions, the -graph reduces to the simple geo-
metric description in (5). In this section, we study the effect of
nonzero secrecy rate threshold, i.e., , and unequal noise
powers, i.e., , on the -graph.
Considering and arbitrary noise powers ,

we can combine (4) with the general propagation model of (1)
and write

(24)

where . We can now replace this ex-

pression for into (3) while allowing an arbitrary threshold .
After some algebra, the edge set for the resulting -graph can
be written as

(25)
with . By setting and

in (25), we obtain the edge set in (5) as a special case.
However, for arbitrary parameters , the -graph can
no longer be characterized by the simple geometric description
of (5). We now analyze the impact of the secrecy rate threshold
and the noise powers on the average node degrees, for

a general channel gain function .
Property 3.3: For the Poisson -graph with edge set in (25)

and any channel gain function satisfying the conditions in

Section II-A, the average node degrees are
decreasing functions of and , and increasing functions of
.
Proof: The result follows in a straightforwardmanner from

a coupling argument [40, Sec. 2.2].
In essence, by increasing the secrecy rate threshold , the re-

quirement for any two nodes to be se-
curely connected becomes stricter, and thus the local connec-
tivity (as measured by the average node degree) becomes worse.
On the other hand, increasing or decreasing makes the
requirement harder to satisfy for any two le-
gitimate nodes . As a result, the local connectivity also
becomes worse.
The exact dependence of the average node degree on the pa-

rameters varies with the function . To gain further
insights, we consider the specific channel gain function

(26)

This function has been widely used in the literature to model
path loss behavior as a function of distance, and satisfies the
conditions in Section II-A. For this case, a characterization of
the first-order moments of and is possible, and is pro-
vided in the following theorem.
Theorem 3.4: For the Poisson -graph with secrecy rate

threshold , noise powers , and channel gain function
, the average node degrees are

(27)

Proof: We consider the process obtained by
adding a legitimate node to the origin of the coordinate system,
and denote the out-degree of the node at the origin by .
Let be the random distance between the
origin and its closest eavesdropper. Define the function

(28)
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Fig. 6. Effect of nonzero secrecy rate threshold and unequal noise powers
on the average node degree, for the case of . The function
was defined in (28).

Fig. 7. PMF of the in- and out-degree of a node ( ). The vertical
line marks the average node degrees, ,
in accordance with Property 3.1.

so that (25) can simply be written as
. This function is depicted in Fig. 6. The average

out-degree is then given by

Defining , we can write

Using the fact that is an exponential RV with mean ,
we obtain (27).

F. Numerical Results

Fig. 7 compares the PMFs of the in- and out-degree of a node.
We clearly observe that the RV does not have a geometric
distribution, unlike the RV . However, the two RVs have
the same mean , according to Property 3.1.

Fig. 8. Probabilities of in- and out-isolation of a node, versus the ratio .
Note that for any fixed , as proved in Property 3.2.

Fig. 9. Average node degree versus the secrecy rate threshold , for various
values of , , , m ,

m ).

Fig. 8 compares the probabilities of out-isolation and in-iso-
lation of a node for various ratios . The curve for
was plotted using the closed form expression in (14). The curve
for was obtained according to (9) through Monte
Carlo simulation of the random area of a typical Voronoi
cell, induced by a unit-density Poisson process. We observe
that for any fixed , as proved in
Property 3.2.
Fig. 9 illustrates the effect of the secrecy rate threshold on

the average node degrees. We observe that the average node
degree attains its maximum value of at ,
and is monotonically decreasing with . As proved in Property
3.3, such behavior occurs for any function satisfying the
conditions in Section II-A.

IV. TECHNIQUES FOR COMMUNICATION WITH ENHANCED
SECRECY

Based on the results derived in Section III, we observe that
even a small density of eavesdroppers is enough to significantly
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disrupt connectivity of the -graph. For example, if the den-
sity of eavesdroppers is half the density of legitimate nodes,
then from (15) the average node degree is only .
In this section, we propose two techniques that achieve an
average degree higher than : i) sectorized transmission,
whereby each legitimate node transmits independently in
multiple sectors of the plane (e.g., using directional antennas);
and ii) eavesdropper neutralization, whereby each legitimate
node guarantees the absence of eavesdroppers in a surrounding
region (e.g., by deactivating such eavesdroppers). For each
strategy, we characterize the average degree of a typical node
in the corresponding enhanced -graph. The average degree
is a measure of secure connectivity, and is used in this section
to quantify and compare the effectiveness of each strategy.

A. Sectorized Transmission

We have so far assumed that the legitimate nodes employ
omnidirectional antennas, distributing power equally among all
directions. We now consider that each legitimate node is able to
transmit independently in sectors of the plane, with .
This can be accomplished, for example, through the use of
directional antennas. With each node , we associate

transmission sectors , defined as

for , where are random offset angles with
an arbitrary joint distribution. The resulting -graph

has an edge set given by

where

Here, is the transmission sector of that contains the des-
tination node , and is the eavesdropper inside that is
closest to the transmitter . Then, the secure link exists if
and only if is closer to than any other eavesdropper inside
the same transmission sector where the destination is located.
We start by characterizing the distribution of the out-degree by
the following theorem.
Theorem 4.1 (Sectorized Transmission): For the enhanced

Poisson -graph with sectors, the out-degree of
a typical node has the following negative binomial PMF

(29)

for .
Proof: We consider the process obtained

by adding a legitimate node to the origin of the coordinate
system, and denote the out-degree of the node at the origin
by . This is depicted in Fig. 10(a). Let denote the
th sector of node 0, where we omitted the subscript 0 for
simplicity. Let be the distances—not necessarily
ordered—between the origin and the legitimate nodes falling

inside (we similarly define for the eavesdrop-

pers falling inside ). Then, , where

is the out-degree of node

0 associated with sector . Furthermore, the RVs are
i.i.d. for different . To determine the PMF of , we use

the fact that and are homogeneous
Poisson processes with rates and , respectively
(by the mapping theorem [35, Sec. 2.3]). Following the steps
analogous to the proof of Theorem 3.2, we can show that
each RV has the geometric PMF ,

, with parameter .10 Now, since the RVs
are i.i.d. in , the total out-degree with sectors

has a negative binomial PMF with degrees of freedom and
the same parameter , i.e., ,

, with . This is the result in (29) and the
proof is completed.
When , (29) reduces to the PMF without sectorization

given in (12), as expected. The following corollary gives the
average node degrees as a function of .
Corollary 4.1: For the Poisson -graph with sectors,

the average node degrees are

(30)

Proof: From , we have
, with . Since

, then (30) follows.
We conclude that the average node degree increases linearly

with the number of sectors , and hence sectorized transmis-
sion is an effective technique for enhancing the secrecy of com-
munications. Fig. 10(a) provides an intuitive understanding of
why sectorization works. Specifically, if there was no sectoriza-
tion, node 0 would be out-isolated, due to the close proximity
of the eavesdropper in sector . However, if we allow inde-
pendent transmissions in four nonoverlapping sectors, that same
eavesdropper can only hear the transmissions inside sector .
Thus, even though node 0 is out-isolated with respect to sector

, it may still communicate securely with some legitimate
nodes inside sectors , , and .

B. Eavesdropper Neutralization

In some scenarios, each legitimate node may be able to phys-
ically inspect its surroundings and deactivate the eavesdrop-
pers falling inside some neutralization region. With each node

, we associate a neutralization region inside which
all eavesdroppers have been deactivated. The total neutraliza-
tion region can then be seen as a Boolean model with points

and associated sets , i.e.,11

10In other words, each RV has the same distribution as the total out-
degree for the case of .
11In other fields such as materials science, the points are also called

germs, and the sets are also called grains [36].
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Fig. 10. Techniques for communication with enhanced secrecy. (a) Sectorized transmission. (b) Eavesdropper neutralization.

Since the homogeneous Poisson process is stationary, it fol-
lows that is also stationary, in the sense that its distribution
is translation-invariant. Since the eavesdroppers inside have
been deactivated, the effective eavesdropper process after neu-
tralization is , where denotes the complement
of .12 The resulting -graph has an edge set
given by

(31)
i.e., the secure link exists if and only if is closer to
than any other eavesdropper that has not been neutralized. In
the following, we consider the case of a circular neutralization
set, i.e., , where is a deterministic neutralization
radius, as shown in Fig. 10(b). We denote the corresponding
-graph by . Even in this simple scenario, the full distri-

butions of the corresponding node degrees and are
difficult to obtain, since the underlying process is quite
complex to characterize. However, it is easier to carry out an
analysis of the first-order moments, namely of . The
following theorem provides the desired result.
Theorem 4.1 (Eavesdropper Neutralization): For the en-

hanced Poisson -graph with neutralization radius , the
average node degrees of a typical node are lower-bounded by

(32)

Proof: We consider the process obtained by adding
a legitimate node to the origin of the coordinate system, and
denote the out-degree of the node at the origin by . This
is depicted in Fig. 10(b). Let be the

12In the materials science literature, is typically referred to as the occupied
region, since it is occupied by grains. In our problem, however, corresponds
to a vacant region, in the sense that it is free of eavesdroppers. To prevent confu-
sion with the literature, we avoid the use of the terms “occupied” and “vacant”
altogether.

random distance between the first nonneutralized eavesdropper
and the origin. Noting that

we can use Fubini’s theorem to write

(33)

where denotes the annulus
centered at the origin, with inner radius and outer radius ; and

is the Palm probability associated with point of process
.13 Appendix C shows that the integrand above satisfies

(34)

Replacing (34) into (33), we have

Rearranging terms and noting that , we
obtain the desired result in (32).
We conclude that the average node degree increases at a

rate that is at least exponential with the neutralization radius ,
making eavesdropper neutralization an effective technique for

13Informally, the Palm probability can be interpreted as the conditional
probability . Since the conditioning event has probability zero,
such conditional probability is ambiguous without further explanation. Palm
theory makes this notionmathematically precise (see [36, Sec. 4.4] for a detailed
treatment).
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Fig. 11. Average node degree versus the neutralization radius , for various
values of m .

enhancing the secrecy of communications. Such exponential
dependence is intimately tied to the fact that the fractional
area of the neutralization region also
approaches 1 exponentially as increases.

C. Numerical Results

Fig. 11 illustrates the effectiveness of eavesdropper neu-
tralization in enhancing secure connectivity. In particular, it
plots the average node degree versus the neutralization radius
, for various values of . We observe that the analytical
lower-bound for given in (32) is very close to the
actual value of obtained through Monte Carlo sim-
ulation. The lower-bound becomes tight in the following two
extreme cases:
1) : This corresponds to the case of no enhancement, so
from (15) we have . Since the bound in
(32) also equals for , it is tight.

2) : In the limit, at least one eavesdropper will fall
almost surely inside the annulus , for any .
As a result, approaches the average number of
legitimate nodes inside the ball , i.e., . Since
the bound in (32) also approaches as , it is
asymptotically tight.

V. CONCLUSION

Using the notion of strong secrecy, we provided an informa-
tion-theoretic definition of the -graph as a model for intrin-
sically secure communication in large-scale networks. Funda-
mental tools from stochastic geometry allowed us to describe in
detail how the spatial densities of legitimate and eavesdropper
nodes influence various properties of the Poisson -graph, such
as node degrees and isolation probabilities. In particular, we
proved that the average in- and out-degrees equal , and
that out-isolation is more probable than in-isolation. In addi-
tion, we considered the effect of the wireless propagation on the
degree of the legitimate nodes. Surprisingly, the average node
degree is invariant with respect to the distribution of the propa-
gation effects (e.g., type of fading or shadowing), and is always

equal to the ratio of spatial densities. We then studied
the effect of nonzero secrecy rate threshold and unequal noise
powers on the -graph. Specifically, we showed that

is decreasing in and , and is increasing in . Fur-
thermore, when the channel gain is of the form ,
we obtained expressions for as a function of ,
and showed that it decays exponentially with .
We proposed sectorized transmission and eavesdropper neu-

tralization as two techniques for dramatically enhancing the se-
crecy of communications. We proved that if each legitimate
node is able to transmit independently in sectors of the plane,
then increases linearly with . On the other hand,
if each legitimate node is able to neutralize all eavesdroppers
within a radius , then increases at least exponentially
with .
Perhaps the most interesting insight to be gained from our

results is the exact quantification of the impact of the eaves-
dropper density on the security of communications provided
at the physical layer: even a modest density of scattered eaves-
droppers can potentially cause a drastic reduction in secure con-
nectivity. In Part II of the paper [32], we study the achievable
secrecy rates and the effect of eavesdropper collusion.

APPENDIX A
PROOF THAT INEQUALITY (19) IS STRICT

Define the event and its comple-
mentary event , which denote full and empty, respectively.
Using this notation, we can rewrite (18) as

To prove that as in (19), it is sufficient to show
that , or equivalently,

. Define the ball . Then,
with reference to the auxiliary diagram in Fig. 5(c), we can write

(35)

Since a.s., then a.s., and the argu-
ment inside the expectation in (35) is strictly positive, and thus

. This concludes the proof.
APPENDIX B

PROOF OF THEOREM 3.3

We consider the process obtained by adding a le-
gitimate node to the origin of the coordinate system, and denote
the out-degree of the node at the origin by . For the legit-
imate nodes, let the distances to the origin (not necessarily or-
dered) be , , and the corresponding channel

propagation effects be . Similarly, we can define
, , and for the eavesdroppers. Define also the

loss function as . We can now consider the

one-dimensional loss processes for the legitimate nodes,



136 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 7, NO. 1, FEBRUARY 2012

with , and for the eavesdrop-

pers, with . Note that loss
process can be interpreted as a stochastic mapping of
the distance process , where the mapping depends on the
random sequence (a similar statement can be made for

, , and ). With these definitions, the out-de-
gree of node 0 can be expressed as

, i.e., it is the number of occurrences in the process
before the first occurrence in the process . In the remainder

of the proof, we first characterize the processes and ; then,
using appropriate transformations, we map them into homoge-
neous processes, where the distribution of can be readily
determined.
Since the RVs are i.i.d. in and independent of

, we know from the marking theorem [35, Sec. 5.2]
that the points form a nonhomogeneous Poisson
process on with density , where
is the pdf of . Then, from the mapping theorem [35, Sec.
2.3], is also a nonhomogeneous Poisson
process on with density denoted by .14 Furthermore,
the process can be made homogeneous through the transfor-
mation , such that is a Poisson
process with density 1. The homogenizing function
can be calculated as follows:

Using a completely analogous reasoning for the process , its
homogenizing function can be written as

But since , it follows that
. The out-degree can now be easily obtained

in the homogenized domain. Consider that both processes
and are homogenized by the same transformation ,
such that and are independent Poisson
processes with density 1 and . Furthermore, since
is monotonically increasing, can be re-expressed as

In this homogenized domain, the propagation effects have dis-
appeared, and the problem is now equivalent to that in The-
orem 3.2. Specifically, when there is an arrival in the merged
process , it comes from process
with probability , and from

with probability . As a result,
has exactly the same PMF as the one given in (12), and is,

therefore, invariant with respect to the distribution .

14In our theorem, the continuity of the function is sufficient to ensure
that is a Poisson process. In general, we may allow Dirac impulses in ,
as long as the distinct points do not pile on top of one another
when forming the process .

APPENDIX C
DERIVATION OF (34)

Because is a Poisson process, the Palm probability
in (33) can be computed using Slivnyak’s

theorem by adding a legitimate node at location to . For a
fixed , we can thus write

(36)

(37)

where denotes the area of the arbitrary region . Equa-
tion (36) follows from conditioning on , and using the fact that
and are independent. Equation (37) follows from Jensen’s

inequality. The term inside the exponential in (37) corresponds
to the average area of a random shape, and can be computed
using Fubini’s theorem as

(38)

Note that corresponds to the probability that a fixed point
is outside the total neutralization region , and does not depend
on the coordinates of due to the stationarity of the process
. Replacing (38) into (37), we obtain the desired inequality in

(34).
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